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1. Introduction

Over the recent years, there has been increasing evidence, coming from the experimental re-

sults at RHIC and their theoretical interpretations [1 – 4], and also from theoretical studies

of the QCD thermodynamics [5 – 7], that the hadronic matter produced after a high-energy

heavy ion collision may interact rather strongly, in spite of being in the deconfined phase of

QCD and having a relatively high partonic density. For instance, the success of theoretical

approaches based on hydrodynamics [3, 8], which assumes local thermal equilibrium and

vanishing, or small, viscosity, in describing collective phenomena like elliptic flow [9, 10],

suggests rapid thermalization and a low viscosity-to-entropy ratio for the matter produced

at RHIC, which are hallmarks of a nearly-ideal fluid, with strong interactions. Also, the

experimental results for the ‘jet-quenching parameter’ at RHIC [11, 12], which is a mea-

sure of the rate at which highly energetic partons loose energy in the surrounding medium,

have been interpreted [13, 14] to yield values which are too large to be explained by weak

coupling calculations [15, 16] (but this interpretation is not universally accepted; see, for

instance, [17]). Furthermore, lattice studies of the QCD thermodynamics give evidence

for a strong coupling behaviour (like the persistence of meson-like bound states [18 – 21]

and strong deviations from the pressure of an ideal gas of quarks and gluons [5, 6]) up to

temperatures a few times the critical temperature for deconfinement. Such conclusions are
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corroborated by analytic calculations for the quark-gluon plasma showing that the weak-

coupling expansion is too poorly convergent to be useful in practice for all temperatures of

interest [22 – 25].

These and similar observations have urged the need for non-perturbative studies of the

hadronic matter at relativistically high temperatures and densities. While lattice gauge

theory is a privileged tool to non-perturbatively address static properties like the thermo-

dynamics or the screening masses, its extension towards dynamical problems, like transport

phenomena, dispersion relations, or the high-energy scattering, remains prohibitively com-

plicated, and new methods are therefore required to systematically address such problems

at strong coupling. The AdS/CFT correspondence [26], although so far limited, in its most

convincing formulation, to gauge theories which are ‘simpler’ (in the sense of having more

symmetries) than QCD, is the most promising candidate in that sense.

This method can most easily deal with the large–N limit, with N the number of colors,

where the gauge coupling g is small but the ‘t Hooft coupling λ= g2N is large, in which

case the N = 4 supersymmetric Yang-Mills (SYM) theory can be mapped onto a weakly-

coupled string theory, that can be studied via semi-classical techniques. Leaving aside the

structural differences between the N =4 SYM theory, which is conformal, and real QCD —

these differences can be argued to be less important in well-chosen physical regimes, and,

besides, some of them can be incorporated into extensions of the N =4 SYM theory (for

which, however, the AdS/CFT correspondence is less firmly established) —, it is still not

clear whether the aforementioned parametric conditions can be made consistent with the

situation in QCD, where N =3 and g∼O(1) (giving λ≃3 ÷ 6) in the interesting physical

regimes. But even if a detailed, quantitative, comparison to real QCD (in particular, to

the experimental data) would be premature, it is nevertheless clear that the AdS/CFT

approach can provide valuable information about the non-perturbative behaviour of gauge

theories, which should allow us to better constraint the physical reality of QCD from the

strong-coupling end.

Given these promising features, and the experimental imperatives at RHIC or LHC,

it is not surprising that, over the last few years, there was a profusion of applications of

the AdS/CFT techniques to problems of interest for high-density QCD. Following early

applications to thermodynamics [27, 28] and the pioneering calculation, by Policastro,

Son, and Starinets, of the shear viscosity [29, 30], there was an intense activity towards

computing the jet-quenching parameter [31 – 34], the energy-loss of a heavy quark [35 – 38]

or of a quark-antiquark pair [39 – 44], the diffusion rate for a heavy quark [45, 46], the

energy disturbances due to moving quarks [47, 48], the Debye screening mass [49, 50], the

production rate for photons and dileptons [51], or the Bjorken expansion and the approach

towards thermalization [52 – 55] — all of that in the context of the strongly-coupled N = 4

SYM plasma at finite temperature (sometimes extended to include a chemical potential).

Several of the studies mentioned above have been concerned with the long-range (∆x≫
1/T ) or large-time (∆t ≫ 1/T ) behaviour of the strongly-coupled plasma, as relevant e.g.

for hydrodynamics, thermalization, or transport phenomena. On the other hand, in order to

study the propagation of ‘hard’ (i.e., highly energetic and relatively small) probes through

the plasma, like jets or electromagnetic probes, it is essential to have a good understanding
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of the plasma structure on short space-time separations ≪ 1/T , much alike the parton

picture in perturbative QCD. Of course, at strong coupling there is a priori not clear

whether the notion of a ‘parton’ — in the sense of a point-like constituent which behaves

as quasi-free during the interaction with the external probe — makes sense in the first place,

neither if such a ‘parton’, in case it exists, should belong to an individual ‘quasiparticle’

(a thermal excitations with energies and momenta of order T ), or rather is a property of

the plasma as a whole. In other terms, is the partonic distribution of the plasma (again,

assuming that this exists) the direct sum of the respective distributions for the constituent

quasiparticles, with appropriate thermal weights, or rather is this qualitatively different ?

Such questions are extremely difficult and below we shall not attempt to answer them

in full generality. In particular, it is not yet understood whether a strongly-coupled gauge

plasma admits a quasiparticle picture on the thermal scale 1/T , so like the Landau theory

of a Fermi liquid, or the quasiparticle structure of the quark-gluon plasma emerging from

resummations of perturbation theory [56, 7]. Fortunately, however, there is no need to

properly understand the structure of the plasma on this scale 1/T so long as we are merely

interested on the corresponding structure on much shorter space-time scales ≪ 1/T . In-

deed, the latter can be directly measured (at least, in a Gedankenexperiment) by an exter-

nal probe with high energy and momentum (ω, q ≫ T ). From the experience with QCD we

know that the most convenient measurement of that type — that whose results are most

directly related to the parton structure of the target — is the ‘deep inelastic scattering’

(DIS) of a leptonic probe off the plasma.

DIS at strong coupling in the context of the AdS/CFT correspondence has been so far

considered [57, 58] only for the case where the target is a single hadron (a ‘dilaton’). In

this approach, the ‘electromagnetic’ probe which initiates the scattering is the conserved

current associated with a particular U(1) symmetry (the ‘R-current’), whose associated ‘R-

charge’ is also carried by the light degrees of freedom which are present inside the hadrons.

By computing the current-current correlator in the hadron wavefunction, one can extract

the same information about hadronic structure functions that would be obtained by DIS

via a ‘photon’ coupled to the U(1) current. In terms of the standard kinematical variables

Q2 and x, with Q2 = q2− ω2 the virtuality of the current and x ≈ Q2/s (at high energy

s≫ Q2), the DIS structure function F2(x,Q
2) is a measure of the number of partons which

carry a longitudinal momentum fraction x and occupy an area ∼ 1/Q2 in the transverse,

impact parameter, space.

In this paper, we shall use the same general setup — the scattering between the R-

current and the plasma — to compute the structure functions of a strongly-coupled N =4

SYM plasma at finite temperature. It turns that, in this case, the formalism is quite

different — in fact, somewhat simpler and also conceptually clearer — than in the case

of a single-hadron target considered in ref. [57, 58]. There are several reasons for such

differences:

First, the string theory dual of the N =4 SYM plasma is unambiguously known, at the

level of the original formulation of the AdS/CFT correspondence [26]: this is a ‘black-hole’

(more precisely, a non-extremal black three-brane; see section 2 below for details) in a

curved space-time geometry which is asymptotically AdS5 × S5. By contrast, in order to
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accommodate a hadronic state, the N = 4 SYM theory (which has no confinement) must

be ‘deformed’ in the infrared, in such a way to break down conformal symmetry. This

deformation is not unique and, besides, its dual analog in the string theory is generally

ambiguous.

Second, the interplay between the large–N limit and the high-energy limit turns out to

be much more subtle for a single-hadron target than for a plasma. This is in turn related to

an essential feature of the strong-coupling problem, which is the deep connection between

the distribution of partons and the issue of unitarity in DIS at high energy. As explained in

ref. [58], at strong coupling, most of the partons are concentrated in the kinematical region

where the scattering is strong and the unitarity corrections are important (the analog of

the ‘saturation’, or ‘color glass condensate’, region of perturbative QCD [59]). This is an

important point that we shall try to motivate here via general arguments, and for which

the subsequent calculations in this paper will provide an explicit realization:

One can heuristically understand this point by extrapolating the picture of parton

evolution in perturbation theory: Partons at large x tend to radiate and thus drop down at

smaller values of x. At weak coupling, the emitted partons are predominantly soft (i.e., they

carry only a tiny fraction x′ ≪ 1 of the longitudinal momentum of their parent partons), so,

even for very high energies, there is still a substantial fraction of the parton distribution at

relatively large values of x. These large–x partons carry almost all of the hadron energy and

momentum, but they are unimportant for high-energy scattering, which is rather controlled

by the bulk of the distribution at small–x. At strong coupling, on the other hand, there is

no penalty for the hard emissions; the distribution of the energy among the child partons

after a branching is essentially democratic, and hence the overall distribution can very fast

degrade, via successive branchings, down to very small values of x. One therefore expects

the structure functions at strong coupling to be concentrated at small values of x, but the

question is, how small ? These functions are, of course, constrained by energy-momentum

conservation — the small–x partons must carry the overall energy and momentum of the

hadron —, but this constraint (a ‘sum-rule’ on F2) is not sufficient to determine the parton

distribution. A more severe constraint comes from unitarity: in the kinematical region

where the scattering is strong, in the sense that the scattering amplitude has reached the

unitarity bound, the structure functions are, by definition, large, and hence the partons

exist. Thus, at strong coupling, the search for the parton distribution is tantamount to

understanding the unitarity problem for DIS.

This is where the large–N limit becomes important: the elementary scattering ampli-

tude is suppressed1 by a factor 1/N2, so for a single-hadron target and in the strict large–N

limit (N → ∞ at fixed energy), the scattering can never become strong, and thus the bulk

of the partons cannot be seen. This is the situation considered in ref. [57], and indeed it

has been found there that the dilaton has no point-like constituents except at extremely

small values of x (for a given resolution Q2), within a kinematical domain which squeezes

exponentially to zero when increasing λ.

1There is no similar suppression for the DIS structure functions because the strength J2 of the R-current

increases like N2, due to the color degrees of freedom of the fields which make up the current.
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But the partonic structure of the dilaton reveals itself after relaxing the large–N limit,

as we did in ref. [58]. Namely, we found that, for sufficiently large Q2, the partons are

all located in the strong-scattering region at x . xs(Q
2), where xs(Q

2) ≃ Λ2/(N2Q2) is

the ‘saturation line’ (a line in the kinematical plane (x,Q2) along which the elementary

amplitude is constant and of order one) and Λ is the infrared cutoff which fixes the size

of the dilaton. Moreover, the phase-space distribution of these partons turns out to be

remarkably simple (and somehow reminiscent of the gluon distribution in the ‘color glass

condensate’ at weak coupling [59]): there is essentially a single parton of a given color

per unit cell in phase-space. This a posteriori legitimates the use of the ‘electromagnetic’

current as a probe of the parton distribution: in spite of the coupling being strong, the

current can interact only with one parton at a time, and thus it can faithfully measure the

parton number. Since, moreover, partons with very small x ≪ xs carry only little energy

and momentum, it is clear that the hadron total energy and momentum is concentrated in

the partons near the saturation line x = xs(Q
2).

Returning, after this long digression, to the plasma problem of current interest, we

note that in this context one can simplify the problem by using the large–N approximation

without loosing the salient features: for a plasma target, the scattering can be strong even

in the large–N limit, because the plasma involves N2 degrees of freedom per unit volume

— as manifest from the fact that its entropy density scales like N2T 3 [27, 28] —, which

compensates for the 1/N2 suppression of the elementary scattering amplitude. Note that,

at this point, and at several other places in the paper, we use a heuristic language in

which the plasma thermal degrees of freedom are treated as ‘quasiparticles’ with typical

energies and momenta of order T , and the overall scattering process is viewed as the sum

of elementary scatterings between these quasiparticles and the R-current. This language,

inspired by the situation at weak coupling, is admittedly ambiguous at strong coupling,

and is used here only to gain more intuition into mathematical manipulations which by

themselves are free of any ambiguity.

Specifically, in the large–N limit of interest, the scattering between the R-current and

the plasma can be described in the supergravity approximation, as the propagation of the

gravitational perturbation induced by the current in the background metric of the black

three-brane. The current-current correlator relevant to DIS is then computed from the

action evaluated on the solution to the classical wave equation — an imaginary part in

this solution being synonymous of inelasticity in the scattering of the current. The wave

dynamics is non-trivial in only one dimension — the radial dimension of AdS5, which plays

the role of an ‘impact parameter’ between the current and the black hole. The relevant

wave equation can be formally rewritten as a Schrödinger equation in one spatial dimension

(actually, two such equations, for the longitudinal and transverse waves, respectively).

Then, the dynamics is controlled by the potential in this equation and, more precisely, by

the competition between two important terms: a ‘repulsive’ term proportional to Q2 which

by itself would keep the wave at the boundary of AdS5 (far away from the horizon of the

black hole), and an ‘attractive’ term, proportional to the energy times the temperature,

which tends to pull the wave towards the black hole. We thus distinguish between two

physical regimes:
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(i) At relatively low energy and/or low temperature, such that x ≫ T/Q, the repulsive

term dominates, and the wave remains confined near the boundary. (For DIS off

the plasma, x ∼ Q2/qT , and we recall that T/Q ≪ 1 for the physical problem of

interest.) In this regime the scattering is weak and quasi-elastic (the imaginary part

in the classical solution is extremely small, since generated via tunneling through

the potential). Correspondingly, the DIS structure functions are exponentially small,

e.g., F2 ∼ exp{−c(xQ/T )1/2}, a result that we interpret as the absence of point-like

constituents in the SYM plasma having x≫ T/Q.

(ii) At high enough energy, such that x . xs(Q) ≃ T/Q, the attractive term in the

potential takes over, and then the wave escapes inside the bulk of AdS5, until it gets

absorbed by the black hole. This absorption generates a large imaginary part in the

solution, and hence a large contribution to the structure functions for DIS, which for

x ∼ xs is evaluated as F2 ∼ N2TQ (see section 4 for more general results). These

results for the structure functions represent the unitarity limit for the current-plasma

scattering, which in this case is saturated by the complete absorption of the current

— a genuine ‘black disk’ limit.

The physical interpretation of these results at small x in terms of partons in the plasma

requires some care: the plasma being infinite, one needs to take into account the finite

duration of the interaction, and also make a boost to a Lorentz frame where the notion

of a parton makes sense (all the other calculations being done in the plasma rest frame).

But after this is properly into account, it becomes clear that our results have a natural

partonic interpretation, which moreover is consistent with the corresponding picture for a

hadron, as obtained in ref. [58]. Namely, for a given resolution Q2, the partons exist only

at sufficiently small values of x, such that x . T/Q, and are homogeneously distributed in

the three-dimensional phase-space, with occupation numbers of order one. Equivalently,

for a given value of x, partons exist only at transverse momenta smaller than, or equal

to, the saturation momentum Qs(x) ≃ T/x. This value for the saturation momentum is

consistent with the representation of the N = 4 SYM plasma as an incoherent superposition

of thermal quasiparticles.

It is finally interesting to notice a similarity between our above estimate for the plasma

saturation momentum and some results in the literature [40, 41] for the screening length

Ls(v, T ) of a heavy quark-antiquark pair moving at velocity v in the hot N = 4 SYM

plasma. The screening length is the maximal separation for which the quark and the

antiquark can be still connected by a string ‘hanging down’ in the radial direction of AdS5.

In refs. [40, 41], one found Ls(v, T ) ≃ κ(1− v2)1/4/T with κ a numerical constant (at least

for v close to 1). Now, in the analogy with our DIS problem, the ‘quark-antiquark pair’

of refs. [40, 41] corresponds to the SYM system emerging from the R-current, which has

a typical transverse extent 1/Q and a rapidity q/Q. It is therefore natural to identify our

variables 1/Q and q/Q with the size L and the Lorentz gamma factor γ = 1/
√

1 − v2 of the

qq̄ pair, respectively. In particular our saturation momentum Qs(x, T ) should be compared

to the inverse screening length 1/Ls(v, T ). To that aim, it is preferable to rewrite the result

in refs. [40, 41] as 1/L2
s ∼ γT 2; after replacing 1/Ls → Qs and γ → q/Qs, this translates
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into Q3
s(q, T ) ∼ qT 2, which is parametrically the same as our result for Qs, as alluded to

above. It would be interesting to explore this correspondence in more detail.

2. General setup and basic equations

Following the general strategy with the problem of deep inelastic scattering, our objective

will be to compute the retarded current-current commutator

Rµν(q) = i

∫

d4x e−iq·x θ(x0) 〈[Jµ(x), Jν(0)]〉 , (2.1)

whose imaginary part determines the DIS structure functions. In the present context, the

density Jµ(x) which enters eq. (2.1) refers to an R-current — the conserved current associ-

ated with a gauged U(1) subgroup of the SU(4) global R-symmetry —, and the expectation

value is understood as a thermal average, over the statistical ensemble corresponding to a

N = 4 SYM plasma at temperature T . The operator Jµ(x) for the R-current receives con-

tributions from the fermionic and scalar fields of the N = 4 SYM theory. Accordingly, and

following the example of perturbative QCD, we expect the imaginary part of Rµν(q) to give

us information about the constituents of the finite-temperature plasma, just as the struc-

ture function of the proton gives information on its (partonic) structure in perturbative

QCD.

In the limit where the Yang-Mills coupling g2 is small but the ‘t Hooft coupling λ = g2N

is large, the AdS/CFT correspondence allows one to evaluate eq. (2.1) in terms of classical

supergravity in the metric of the AdS5 × S5 black hole. The corresponding metric reads

ds2 =
(πTR)2

u
(−f(u)dt2 + dx

2) +
R2

4u2f(u)
du2 +R2dΩ2

5 , (2.2)

where T is the temperature of the black hole (the same as for the N = 4 SYM plasma), R

is the common radius of AdS5 and S5, t and x = (x, y, z) are the time and, respectively,

spatial coordinates of the physical Minkowski world, u is the radial coordinate on AdS5, dΩ2
5

is the angular measure on S5, and f(u) = 1−u2. Note that our radial coordinate has been

rescaled in such a way to be dimensionless: in terms of the more standard, dimensionfull,

coordinate r, it reads u ≡ (r0/r)
2, with r0 = πR2T . Hence, in our conventions, the black

hole horizon lies at u = 1 and the Minkowski boundary at u = 0.

In order to evaluate eq. (2.1), one needs to study the metric perturbation induced by

the R-current Jµ around the background metric (2.2). The relevant gravitational wave

is a vector field Am(t,x, u) in AdS5, which obeys the classical equations of motion with

given boundary conditions at u = 0. (Here, m = µ or u is the coordinate index on AdS5,

with µ = 0, 1, 2, 3 referring to a Minkowski coordinate.) Once the corresponding solution

is known, the tensor Rµν can be extracted from the classical supergravity action evaluated

as a functional of the boundary fields Aµ(t,x, 0) (see below). We shall assume the exter-

nal current to be weak, so that the metric perturbations be small and the corresponding

equations be linear in Am. Accordingly, we only need the supergravity action to quadratic
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order in Am, which reads (see, e.g., [64])

S = − N2

64π2R

∫

d4xdu
√−g gmpgnq FmnFpq , (2.3)

where Fmn = ∂mAn − ∂nAm, ∂m = ∂/∂xm with xm = (t,x, u), and g = det(gmn). The

classical equations of motion generated by the action (2.3) are the Maxwell equations in

the geometry of the AdS5 black hole. We shall work in the gauge Au = 0 and choose the

incoming perturbation as a plane wave propagating in the z direction: qµ = (ω, 0, 0, q).

Then we can write

Aµ(t,x, u) = e−iωt+iqz Aµ(u) (2.4)

with the fields Aµ(u) obeying the following equations (below, i = 1, 2)

̟A′
0 + kfA′

3 = 0 (2.5)

A′′
i +

f ′

f
A′
i +

̟2 − k2f

uf2
Ai = 0 (2.6)

A′′
0 −

1

uf
(k2A0 +̟kA3) = 0 (2.7)

where a prime on a field indicates a u-derivative and we have introduced dimensionless,

energy and longitudinal momentum, variables, defined as

̟ ≡ ω

2πT
, k ≡ q

2πT
. (2.8)

Denoting a(u) ≡ A′
0(u), eqs. (2.5) and (2.7) can be combined to give

a′′ +
(uf)′

uf
a′ +

̟2 − k2f

uf2
a = 0 , (2.9)

which will be one of our key equations in what follows (the other one being eq. (2.6) for

Ai).

The above equations (2.5)–(2.9) have already been presented in the literature (see,

e.g., refs. [60 – 64]), but in relation with other physical problems, corresponding to physical

regimes very different from ours. These equations must be solved with the condition that

the fields take generic values Aµ = Aµ(u = 0) at the AdS5 boundary u = 0. Then eq. (2.7)

implies the following boundary condition for a(u)

lim
u→0

[

ua′(u)
]

= k(kA0 +̟A3)
∣

∣

u=0
≡ k2AL(0) . (2.10)

For the solutions to be uniquely specified, an additional boundary condition is still needed.

Following refs. [61, 64], we shall require the solution to be a purely outgoing wave near the

horizon at u = 1, where by ‘outgoing’ we mean a wave which is impinging into the black

hole (and thus is departing from the Minkowski boundary). Physically, this corresponds to

the fact that a wave cannot be reflected by the black hole, but only absorbed. Notice that,

in the zero-temperature case where there is no black hole and the coordinate u extends
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to infinity, the corresponding boundary condition is simply that the fields be regular at

u→ ∞.

Once the classical solution is known, the next step is to compute the corresponding,

‘on-shell’, value of the action. Starting with eq. (2.3) and using the equations of motion to

perform the integration over u, it is straightforward to deduce

S = −N
2T 2

16

∫

d4x

[(

A0 +
̟

k
A3

)

a(u) −Ai∂uAi(u)

]

u=0

, (2.11)

where we have dropped a contribution coming from u = 1 in accordance with the prescrip-

tion in ref. [61, 62]. Note that the appearance of the factor T 2 in front of S is merely a

consequence of our definition of the variable u (which scales like T 2, so ∂u ∼ 1/T 2). If one

returns to the dimensionfull radial coordinate r, then there is no apparent factor T 2, and

indeed eq. (2.11) has a non-trivial limit as T → 0, corresponding to the vacuum polariza-

tion tensor for the R-current (see section 3). Given the plane-wave structure in eq. (2.4),

the action density in eq. (2.11) is independent of xµ = (t,x), so it is convenient to separate

out the volume of space-time: S =
∫

d4xS. From the action density S, the tensor Rµν(q)

is finally obtained as

Rµν(q) =
∂2S

∂Aµ∂Aν
, (2.12)

where Aµ ≡ Aµ(u = 0). Note that the ensuing tensor has mass dimension two, as it should.

The tensor Rµν can be given the standard tensorial decomposition (see appendix A),

which shows that there are only two independent scalar components, R1 and R2, whose

imaginary parts determine the two DIS structure functions, F1 and F2. (The precise

definitions are given in appendix A.) Since in practice we shall solve second-order differential

equations with real coefficients, cf. eqs. (2.6) and (2.9), it is interesting to understand how

an imaginary part in the respective solutions (and hence a non-vanishing contribution

to the DIS structure functions) can arise in the first place. This is generated via the

aforementioned boundary condition near u = 1, which allows for the absorption of the

gravitational wave by the black hole.

For a given temperature T of the target plasma, the scalar functions Ri, or Fi, with

i = 1, 2, depend in general upon two kinematical invariants, that we shall conveniently

choose as the virtuality Q2 of the R-current and the Bjorken x variable. These are defined

as

Q2 ≡ q2 − ω2 , x ≡ Q2

−2(q · n)T
=

Q2

2ωT
, (2.13)

where nµ is the four-velocity of the plasma in a generic frame, and the second expression for

x holds in the plasma rest frame, for which nµ = (1, 0, 0, 0). Unless otherwise specified, in

what follows we shall always work in the plasma rest frame. We shall consider the large–Q2

and high-energy kinematics, where q2 ≫ Q2 ≫ T 2 and hence ω ≃ q. These conditions

allow for both small (x≪ 1) and large (x ∼ O(1)) values of x, but in what follows we shall

be mostly interested in small–x regime where q ≫ Q2/T .
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To conclude this section, let us present an alternative form for our key equations, (2.6)

and (2.9), which is more insightful and also better suited for constructing approximate

solutions via WKB techniques. Via simple manipulations, these equations can be brought

into the form of the (time-independent) Schrödinger equation in one spatial dimension,

that is, ψ′′ − V ψ = 0.

Consider first eq. (2.9): when rewritten for the new field ψ(u) ≡
√

u(1 − u2) a(u), this

takes the form (with K2 ≡ k2 −̟2)

ψ′′ − 1

u(1 − u2)2

[

− 1

4u
(1 + 6u2 − 3u4) +K2 − k2u2

]

ψ = 0 , (2.14)

which is of the Schrödinger type, as anticipated. In the interesting regime at k2 ≫ K2 ≫ 1,

the potential V (u) in (2.14) is well approximated by

V =
1

u(1 − u2)2

[

− 1

4u
+K2 − k2u2

]

. (2.15)

This describes a potential barrier, whose shape is illustrated in figure 1, and also in figure

2a, for three different physical situations, corresponding to different regimes for the ratio

k/K3: (i) k/K3 < 8/(3
√

3) in figure 1a, (ii) k/K3 = 8/(3
√

3) in figure 1b, and (iii)

k/K3 > 8/(3
√

3) in figure 1c. As it should be clear from figure 1b, the critical value

k/K3 = 8/(3
√

3) corresponds to the case where the height of the potential vanishes at its

peak. Note that a value of O(1) for the ratio k/K3 corresponds to a value x ∼ T/Q ≪ 1

for the Bjorken variable.

We can understand much about the solution to (2.14) by inspection of these figures:

When k/K3 < 8/(3
√

3) (the situation at intermediate energies), there is a high potential

barrier (cf. figure 1a), with classical turning points u1 ≃ 1/(4K2) and u2 ≃ K/k. (Note

that u1 ≪ u2 ≪ 1 in the interesting regime where k ≫ K ≫ 1, with k ≪ K3 though.) We

then expect the solution ψ(u) to be concentrated within the classically allowed region at

u . 1/K2. Moreover, the DIS structure functions are expected to be extremely small in

this case, since an imaginary part in the classical solution can develop only via tunneling

through the high potential barrier.

On the other hand when k/K3 > 8/(3
√

3) (the high-energy case, cf. figure 1c), there

is no potential barrier any longer, so the gravitational wave can easily flow into the black

hole and thus get absorbed by the latter. We then expect a large imaginary part to Rµν .

Similar conclusions apply to the transverse modes Ai as well, although the correspond-

ing argument is slightly more involved, and perhaps less intuitive. With the substitution

φ(u) ≡
√

(1 − u2)Ai(u) (for either i = 1 or i = 2, the respective equations being identical),

eq. (2.6) takes the Schrödinger-like form

φ′′ − 1

u(1 − u2)2
[

K2 − k2u2 − u
]

φ = 0 , (2.16)

where for the present purposes the potential can be approximated by

V =
1

u(1 − u2)2
[

K2 − k2u2
]

. (2.17)
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Figure 1: The potential V (u) in eq. (2.15) for three values of the ratio k/K3: (a) k/K3 < 8/(3
√

3),

(b) k/K3 = 8/(3
√

3), and (c) k/K3 > 8/(3
√

3). For the figures to look more suggestive, all the

chosen values for k/K3 are relatively close to the critical value 8/(3
√

3).
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Figure 2: The potentials V (u) corresponding to longitudinal waves, cf. eq. (2.15) (left) and,

respectively, transverse waves, cf. eq. (2.17) (right), are represented for several values of the ratio

k/K3, corresponding to physical regimes well separated from each other.

This potential is illustrated in figure 2b, for two values of the ratio k/K3. As manifest

in these figures, the potential barrier is now concentrated near the boundary at u = 0,

within a distance u . 1/K2, whereas the classically allowed region (i.e., the region where

V (u) ≤ 0) starts at u = K/k. With increasing energy, the barrier does not disappear

anymore, rather it gets squeezed towards u = 0, in such a way that its effects become

smaller and smaller. At low energy, the wave can penetrate into the bulk only up to a

small distance u ∼ 1/K2 away from the boundary. But when the energy is so high that

k/K3 ∼ O(1), the penetration distance ∼ 1/K2 becomes of the same order as the classical

turning point atK/k, and then the wave can freely escape in the allowed region at u > K/k,

and thus get absorbed by the black hole.

These simple observations will be confirmed and substantiated by the subsequent anal-

ysis in this paper.
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3. Low energy: the multiple scattering series

In this section we shall consider the low-energy regime at k/K3 ≪ 1, cf. figure 1a, where the

effects of the term proportional to k2 in the potential V (u) (in either eq. (2.15), or (2.17))

can be treated in perturbation theory. Note that, in terms of our original variables ω and q,

cf. eq. (2.8), the condition k ≪ K3 amounts to qT 2 ≪ Q3. Hence, for a fixed virtuality Q2,

the ‘low-energy’ regime can be also understood as a low-temperature one, T ≪ (Q3/q)1/2,

and the perturbative expansion that we shall shortly construct can be alternatively viewed

as a multiple scattering series, or a low-temperature expansion.

Clearly, even when k ≪ K3, this perturbative expansion cannot work for arbitrary

values of u : when u & K/k, the energy-enhanced term ∝ k2 in the potential becomes

the dominant term there, which is responsible for the existence of the classically allowed

region at u ≥ K/k. Thus, not surprisingly, the perturbative treatment of the finite-

energy/temperature effects cannot account for the contributions due to tunneling, which

are genuinely non-perturbative and will be estimated in appendix B within the WKB

approximation. But if one leaves these contributions aside (they are exponentially sup-

pressed anyway; see appendix B), then perturbation theory should work reasonably well in

the small–u region at u . 1/K2, which is the relevant region for computing the R-current

correlator, cf. eqs. (2.11)–(2.12).

The main result that we shall arrive at in this section could be characterized as neg-

ative : we shall find that for k ≪ K3 the DIS structure functions are strictly zero when

computed to all orders in the multiple scattering (or ‘twist’) expansion. But the subsequent

analysis is still interesting in that it provides the twist expansion for the real part of Rµν .

In particular, from the leading term in this expansion (the single scattering approxima-

tion), we shall be able to deduce a couple of energy-momentum sum rules which will be

very useful later on.

In the interesting region at u . 1/K2 ≪ 1, our key equations (2.6) and (2.9) simplify

to

A′′
i −

K2

u
Ai = −k2uAi , (3.1)

and, respectively,

a′′ +
1

u
a′ − K2

u
a = −k2ua . (3.2)

In writing these equations, we have separated the terms ∝ k2 in the r.h.s., anticipating

that they are going to be treated as ‘small perturbations’. For consistency with the present

approximations, which ignore the phenomenon of tunneling, the above equations must be

solved with the condition that the fields vanish as u → ∞. (This would be the correct

boundary condition in the zero-temperature limit T → 0, and it remains the appropriate

boundary condition for a perturbative treatment of the finite-temperature effects.)

Consider first eq. (3.2); after a change of variable ζ ≡ 2K
√
u, this becomes

(

d2

dζ2
+

1

ζ

d

dζ
− 1

)

a(ζ) = − k2ζ4

16K6
a(ζ) . (3.3)
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The zero-temperature limit2 of this equation, that is,

(

d2

dζ2
+

1

ζ

d

dζ
− 1

)

a(0)(ζ) = 0 , (3.4)

describes the (longitudinal) metric perturbation induced by the R-current in AdS5 in the

absence of the black hole (the supergravity dual of an R-current propagating through the

gauge theory vacuum). The general solution to (3.4) is a linear combination of the modified

Bessel functions K0 and I0. The coefficient of I0 is set to zero by the condition of regularity

as ζ → ∞, while that of K0 is fixed by the boundary condition at ζ = 0, cf. eq. (2.10). One

thus finds

a(0)(ζ) = −2k2AL(0)K0(ζ) . (3.5)

The general equation (3.2) can be given a formal solution via Green’s function techniques:

a(ζ) = a(0)(ζ) +

∫ ∞

0
dζ ′G(ζ, ζ ′)

(−k2ζ ′4

16K6

)

a(ζ ′) , (3.6)

with the Green’s function G(ζ, ζ ′) obeying

(

d2

dζ2
+

1

ζ

d

dζ
− 1

)

G(ζ, ζ ′) = δ(ζ − ζ ′) , (3.7)

together with the following boundary conditions

G(ζ, ζ ′) → 0 as ζ → ∞,

ζ
d

dζ
G(ζ, ζ ′) → 0 as ζ → 0. (3.8)

It is easily checked that the corresponding solution reads

G(ζ, ζ ′) = −ζ ′
{

K0(ζ)I0(ζ
′)Θ(ζ − ζ ′) + K0(ζ

′)I0(ζ)Θ(ζ ′ − ζ)
}

. (3.9)

The ‘solution’ (3.6) is truly an integral equation for a(ζ), which generates the multiple

scattering series through iterations — here, for the longitudinal wave.

Consider similarly the transverse sector. By replacing Ai = Ai(0)ζh(ζ), with ζ =

2K
√
u, within eq. (3.1), one finds

(

d2

dζ2
+

1

ζ

d

dζ
− 1 − 1

ζ2

)

h = − k2ζ4

16K6
h . (3.10)

The zero-temperature version of this equation is solved by h(0) = K1(ζ), which obeys

ζh(0)(ζ) → 1 as ζ → 0, as it should. (The other solution I1(ζ) is rejected by the condition

2The limit T → 0 of the present equations may look tricky since we have defined the dimensionless

variables in eq. (2.8) by dividing though T . However, in the zero-temperature case, one can view T in

eq. (2.8) as an arbitrary reference scale, introduced in order to define dimensionless variables. This scale

cancels out in the final results for the current correlator at T = 0, as one can check on the examples of

eqs. (3.17) and (3.18) below.
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of regularity at infinity.) The general equation (3.10) can then be rewritten as an integral

equation similar to eq. (3.6) with a(0) → h(0) and the following Green’s function

G(ζ, ζ ′) = −ζ ′
{

K1(ζ)I1(ζ
′)Θ(ζ − ζ ′) + I1(ζ)K1(ζ

′)Θ(ζ ′ − ζ)
}

. (3.11)

As a simple application of the previous results, let us now compute the first two

terms in the low-temperature expansion of the current-current correlator (2.1) — that

is, its zero-temperature piece R
(0)
µν , which represents the vacuum polarization tensor of

the R-current, and the first temperature-dependent contribution R
(1)
µν , which describes the

scattering between the R-current and the N = 4 SYM plasma in the single-scattering, or

‘leading twist’, approximation. To that aim, we need the first two iterations in the above

integral equations for a(u) and Ai(u), evaluated near u = 0 (cf. eqs. (2.11)–(2.12)).

To the order of interest, we can write a(u) = a(0)(u) + a(1)(u), where a(0)(u) has a

logarithmic singularity as u→ 0, as expected according to eq. (2.10),

a(0)(u) = k2AL(0)
(

lnK2 + lnu+ 2γ + O(u)
)

(3.12)

(γ = 0.577 . . . is Euler’s constant), while a(1)(0) is finite and equal to

a(1)(0) = AL(0)
−2k4

16K6

∫

dζ ζ5K2
0(ζ) = − 2k4

15K6
AL(0) . (3.13)

As for the transverse fields Ai(u), these are needed up to linear order in u, i.e., to quadratic

order in ζ ; one finds Ai(u) = A
(0)
i (u) +A

(1)
i (u), with

A
(0)
i (u) ≃ Ai(0)

{

1 + uK2
(

lnK2 − 1 + lnu+ 2γ
)

}

(3.14)

A
(1)
i (u) ≃ Ai(0)

uk2

5K4
. (3.15)

When the T = 0 fields in (3.12) and (3.14) are used to evaluate the vacuum action S(0), cf.

eq. (2.11), the result exhibits a logarithmic divergence coming from the limit u → 0. As

usual in the AdS/CFT context, this singularity is interpreted as a ultraviolet divergence

in the dual gauge theory, to be removed via renormalization. To that aim, it is important

to return to the original variables r, ω, q, and Q2 = q2 − ω2, to make it clear that the

UV ‘counterterms’ are indeed temperature-independent. Then, the relevant terms in the

action are

lnK2 + lnu = ln
Q2

4π2T 2
+ ln

π2R4T 2

r2
= ln

Q2

Λ2
+ ln

R4Λ2

4r2
, (3.16)

where the T -dependence has disappeared, as anticipated, and Λ plays the role of the

substraction scale on the gauge theory side. For convenience, we renormalize by dropping

the last term in the above equation together with the finite term 2γ. We thus obtain

S(0) =
∫

d4xS(0), with

S(0) = − N2

64π2
ln
Q2

Λ2

[

(qA0 + ωA3)
2 −Q2AT · AT

]

u=0

, (3.17)
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where we have introduced the transverse vector notation AT ≡ (A1, A2). From this expres-

sion, one can immediately deduce the vacuum polarization tensor (with ηµν = (−1, 1, 1, 1)):

R(0)
µν (q) =

(

ηµν −
qµqν
Q2

)

R
(0)
1 (Q2) with R

(0)
1 (Q2) =

N2Q2

32π2
ln
Q2

Λ2
. (3.18)

This is transverse, as required by current conservation, and moreover it has exactly the same

expression as in zeroth-order (one loop) perturbation theory. This ‘non-renormalization’

property of the R-current polarization tensor has been already observed in the literature,

and proven to be a consequence of supersymmetry [65].

Similarly, by using the finite–T contributions to the fields, eqs. (3.13) and (3.15), one

can compute the respective contribution to the on-shell action, S(1) =
∫

d4xS(1), which is

manifestly ultraviolet-finite:

S(1) =
N2π2T 4

30

q2

Q6

[

(qA0 + ωA3)
2 +

3

2
Q2A2

T

]

u=0

, (3.19)

From (3.19) one can determine the single-scattering, or low-temperature, part of the tensor

Rµν . This has the structure exhibited in eq. (A.1) with the following, ‘leading-twist’,

expressions for the scalar components R1 and R2:

R
(1)
1 =

N2π2T 2

40x2
, R

(1)
2 =

N2π2T 4

6Q2
, (3.20)

which are both real : as anticipated at the beginning of the section, the DIS structure

functions vanish in the leading-twist approximation, and in fact to all orders in the twist

expansion — indeed, all the terms generated by iterating the integral equation (3.6) for

the longitudinal field, or the corresponding equation for the transverse fields, are obviously

real.

Note the 1/x2 behavior of R
(1)
1 , which is the hallmark of the graviton exchange and

reflects the fact that the contributions to Rµν computed in eq. (3.20) come from the twist-

two and spin-two operator Tµν (the energy-momentum tensor) in the operator product

expansion (OPE) of the current-current correlator (2.1). This is the only leading-twist

operator which survives in the OPE at strong coupling, since the other twist-two operators

with spins j > 2 acquire large anomalous dimensions ∼ λ1/4 → ∞. It is quite remarkable

that the OPE coefficients of Tµν that we have (indirectly) computed at strong coupling are

exactly the same as the corresponding coefficients at weak coupling, as we shall demonstrate

via an explicit zeroth-order calculation in appendix C. This non-renormalization is yet

another manifestation of the high degree of symmetry of the N = 4 SYM theory (see also

ref. [68]).

Similarly, the multiple scattering series previously discussed can be interpreted as

the exchange of arbitrarily many gravitons. One simple way of understanding the lack

of an imaginary part in these multiple graviton exchanges is to note that the gravitons

carry no four-dimensional space-time momentum, as reflected in the fact that the metric

only depends upon the radial variable u in AdS5. Hence, because of energy-momentum

conservation, the graviton exchanges cannot create on-shell final states, which would be

the source for inelasticity.
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We thus conclude that in the intermediate energy/low temperature regime at k ≪ K3

(or, equivalently, at relatively large values x≫ T/Q for the Bjorken variable), the only non-

trivial contributions to the DIS structure functions Fi ∝ ImRi arise via tunneling through

the potential, and thus are necessarily small. In appendix B, these contributions will be

estimated in the WKB approximation as Fi ∼ exp{−c(K3/k)1/2}, where the prefactor c

is a number of O(1). This estimate confirms that ImRi remains extremely small so long

as k ≪ K3. We thus draw the rather striking conclusion that the strongly-coupled plasma

has essentially no point-like constituents at x larger than xs ∼ T/Q.

Finally, let us mention an interesting consequence of the leading-twist results in

eq. (3.20), which will be very useful in what follows. Introducing the variable z ≡ 1/x

and assuming standard analytic properties for the current-current correlator in the com-

plex z plane, one can relate the behaviour of Ri(z) near z = 0, where eq. (3.20) applies,

to the integral of the DIS structure function Fi ∝ ImRi along the cuts on the real axis in

the physical region at |z| > 1. One thus obtain the following sum-rules (see appendix A

for details)

E = 18T 2

∫ 1

0
dxF2(x,Q

2), (3.21)

E = 45T 2

∫ 1

0
dxFL(x,Q2), (3.22)

where F1 and F2 are defined in (A.2)–(A.3), FL = F2 − 2xF1 is the longitudinal structure

function, and

E =
3π2N2T 4

8
(3.23)

is the energy density of the N = 4 SYM plasma in the strong coupling limit: E = Θ00,

with Θµν the energy-momentum tensor of the plasma, cf. eq. (A.4). The appearance of the

energy density in the l.h.s.’s of equations (3.21) and (3.22) is in fact natural: as we shall

further explain in section 5, the integrals in their r.h.s.’s are proportional to the energy

density carried by the plasma constituents, as probed in DIS with a resolution scale Q2;

this should be the same as the total energy density in the plasma, and in particular be

independent of Q2 — which is precisely the content of eqs. (3.21)–(3.22).

But the previous results in this section also show that the relatively large values of

x, such that x > T/Q, give only tiny contributions to the structure functions, which die

away exponentially at large Q2 and hence cannot ensure the fulfillment of the sum-rules.

Therefore, the only way for these sum-rules to be satisfied is that the integrals in their

r.h.s.’s be saturated by contributions from ‘partons’ at smaller values of x . T/Q. This

corresponds to the ‘high-energy’ situation in figure 1c, to the analysis of which we now

turn.

4. High energy: deep inelastic scattering

In this section, we shall consider the high-energy (k > K3), or small–x (x < T/Q), regime,

which is the most interesting regime for our present analysis, since this is where the deeply
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inelastic scattering truly occurs. In this regime, the potential barrier becomes ineffective

— it has either completely disappeared (in the longitudinal sector, cf. figures 1c or 2a),

or become so narrow that it gives no significant attenuation (in the transverse sector, cf.

figure 2b) —, and then the gravitational waves induced by the R-current can propagate

towards large values of u ∼ O(1), until they reach the black hole horizon at u = 1 and

thus get absorbed. As explained in section 2, this absorption manifests itself via imaginary

parts in the classical solutions, that we shall first compute, and from which we shall then

deduce the DIS structure functions.

By lack of exact solutions to the wave equations (2.6) and (2.9), we shall consider ap-

proximations which are valid for very high energies, such that k ≫ K3, but which cannot

capture the transition from quasi-elastic to deeply-inelastic scattering, which takes place

around k ∼ K3. In appendix D, we shall construct approximate solutions valid for generic

values of u, by performing piecewise approximations (in particular, the WKB approxima-

tion) and then matching the intermediate solutions with each other. Here, however, we

shall use a simpler strategy to calculate the classical action (2.11). To appreciate this

strategy, let us first recall what was the main difficulty with this calculation: although

the action involves the classical solution near u = 0 alone, as manifest on eq. (2.11), this

solution is generally sensitive to the dynamics at large u ∼ O(1), via the ‘outgoing wave’

boundary condition that one has to impose near the horizon. The important simplification

that appears at high energy is that this boundary condition can now be imposed already at

relatively small values u≪ 1, where the general equations reduce to simpler ones, that can

be solved exactly. Indeed, in the absence of any potential barrier, there is no mechanism to

generate reflected waves at intermediate values of u < 1; hence, an incoming wave cannot

be tolerated in the solution not even at u ≪ 1, since it would necessarily describe reflec-

tion off the black hole. This argument will be confirmed by the more general construction

in appendix D, which will provide the same small–u solutions as obtained below in this

section.

Note an additional, important, simplification which occurs at high energy: when k ≫
K3, the term in the potential involving the virtuality K2 of the current becomes negligible

as compared to the other terms there, for all the relevant values of u (for both longitudinal

and transverse modes). This means, in particular, that our subsequent discussion also

applies to a time-like (K2 ≡ k2 − ̟2 < 0) current, provided its energy is high enough

(k ≫ |K|3).
Indeed, consider the longitudinal sector first. When increasing u from u = 0, the last

term ∝ k2u2 in the potential (2.15) becomes comparable to the first term ∝ 1/4u already at

the very small value u0 = 1/(4k2)1/3, at which the term ∝ K2 is still negligible. Hence, the

latter is never relevant, as anticipated. In particular, for u≪ 1, the potential simplifies to

V ≃ − 1

u2

[

1

4
+ k2u3

]

for u≪ 1 , (4.1)

which has a peak at u ∼ u0, cf. figure 1c. By performing the corresponding approximations

on eq. (2.9), this equation becomes

a′′ +
1

u
a′ + k2ua = 0 , (4.2)
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which can be easily solved: after changing variable according to ξ ≡ 2
3ku

3/2, we obtain

(

d2

dξ2
+

1

ξ

d

dξ
+ 1

)

a(ξ) = 0 (4.3)

which has the general solution

a(ξ) = c1J0(ξ) + c2N0(ξ) , (4.4)

where J0 and N0 are the usual Bessel and Neumann functions. Recalling the behaviour of

these functions near ξ = 0, one sees that the boundary condition (2.10) fixes the coefficient

c2,

c2 =
πk2

3
AL(0) , (4.5)

but has no consequence for c1. To also determine the latter, we shall impose, as announced,

the outgoing-wave boundary condition at sufficiently large values of u. Note that, although

u is small, u≪ 1, the argument ξ of the Bessel functions becomes large, ξ ≫ 1, for all the

values of u far beyond the peak of the potential: u≫ u0 ∼ 1/k2/3. In that region, one can

use the asymptotic expressions for the Bessel functions, that is, J0(ξ) ≃
√

2/πξ cos(ξ−π/4)

and N0(ξ) ≃
√

2/πξ sin(ξ − π/4). If one also remembers the exponential factor yielding

the time-dependence, cf. eq. (2.4), it becomes clear that a purely outgoing-wave solution

a(t, ξ) ∝ e−i(ωt−ξ) is obtained by choosing

c1 = −ic2 . (4.6)

One thus obtains the following expression for the longitudinal solution in the region u≪ 1

a(u) ≃ −i πk
2

3
AL(0)H

(1)
0

(

2

3
ku3/2

)

for u≪ 1 , (4.7)

where H
(1)
0 = J0 + iN0 is a Hankel function.

A similar discussion applies to the transverse waves, which satisfy eq. (2.6), or (2.16).

In the high-energy regime at k ≫ K3, one can neglect the effects of the extremely narrow

potential barrier located at 0 < u < K/k. Indeed, the width K/k of the barrier is much

smaller then the distance ∼ 1/K2 over which the solution near u = 0 would start to

significantly differ from its boundary value at u = 0. In the small–u region atK/k . u≪ 1,

the potential (2.17) reduces to V ≃ −k2u and then both eq. (2.6) and eq. (2.16) reduce to

A′′
i + k2uAi = 0 . (4.8)

This is an Airy equation whose general solution can be written as a linear combination of

Ai(−uk 2

3 ) and Bi(−uk 2

3 ) or, equivalently [66], in terms of the Bessel functions of argument

ν = 1/3. We choose this latter representation, for more symmetry with the previous

discussion; we thus write (with ξ = 2
3u

3/2k, as before)

Ai(ξ) = ξ
1

3

[

c1J1/3(ξ) + c2N1/3(ξ)
]

, (4.9)
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where c2 is determined from the value of Ai at u = 0 and we again choose c1 = −ic2, in

order for the solution to become a purely outgoing wave when u ≫ 1/k2/3. One finally

gets the following result at small u:

Ai(u) ≃ Ai(0)
iπ

Γ(1/3)

(

k

3

)1/3 √
u H

(1)
1/3

(

2

3
ku3/2

)

for u≪ 1 , (4.10)

which now features the Hankel function H
(1)
1/3 = J1/3 + iN1/3.

By putting together the previous results (4.7) and (4.10), one can evaluate the on-shell

action according to (2.11); this gives S =
∫

d4xS with

S = −N
2T 2

48

[

k2A2
L(0)

(

2

(

γ+ln
k

3

)

− iπ

)

+
9π

Γ2(1/3)

(

k

3

)2/3( 1√
3
−i

)

A2
T (0)

]

. (4.11)

Note the emergence of the imaginary part in the action (4.11), which has the right sign

(ImS > 0) to describe dissipation, i.e., to yield positive contributions to the DIS structure

functions. A simple calculation using eqs. (2.12), (A.1), (A.2) and (A.3), finally leads to

the following expressions for the structure functions at small x≪ xs ∼ T/Q:

F1 =
3N2T 2

16Γ2(1/3)

(

k

3

)2/3

, (4.12)

FL ≡ F2 − 2xF1 =
N2Q2x

96π2
, (4.13)

which represent our main result in this paper. Although strictly valid only for x ≪ xs,

these results remain parametrically correct also in the transition region at x ≃ xs. For

x ≫ xs, on the other hand, the structure functions are negligibly small, as discussed in

section 3.

To render the above results more transparent, it is convenient to rewrite them in

terms of the conventional variables for DIS, x and Q2, and to also introduce the transverse

structure function FT ≡ 2xF1, such that F2 = FT +FL. Then eqs. (4.12) and (4.13) imply

the following parametric estimates:

FT (x,Q2) ∼ N2 T
2

x

(

x2Q2

T 2

)2/3

,

FL(x,Q2) ∼ N2 T
2

x

(

x2Q2

T 2

)

, (4.14)

which show that, in the very small–x regime at x ≪ T/Q, the longitudinal structure

function is negligible as compared to the transverse one, FL ≪ FT , and thus, somehow

surprisingly, an analog of the Callan-Gross relation applies: F2 ≃ 2xF1. This looks sur-

prising since it is quite different from what happens in the case where the target is a single

hadron, at either weak coupling3 [59], or strong coupling [57, 58], where in the high-energy

limit FL and FT are parametrically of the same order.

3In QCD at weak coupling, the Callan-Gross relation holds only in the Bjorken scaling regime at relatively

large x, where the structure functions are dominated by the valence quarks and depend very weakly upon

Q2.
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Figure 3: Proposed ‘phase diagram’ for DIS off a N = 4 SYM plasma at high energy and strong

coupling.

5. Saturation and the partonic structure of the plasma

The results of the last two sections are conveniently described using figure 3 where τ ≡
ln 1/x is the ‘rapidity’ and ρ ≡ ln(Q2/T 2). For a given ρ ≫ 1 and values of τ below the

saturation line τs(ρ) = ρ/2, meaning x≫ xs ≃ T/Q, the structure functions are extremely

small (cf. eq. (B.10) in appendix B),

FL, T ∼ N2Q2x exp
{

− c(x/xs)
1/2

}

∝ exp
{

− c e(τs−τ)/2} for τ < τs(ρ) , (5.1)

while for values of τ significantly above that line (x ≪ xs) the structure functions take

on the values given in (4.12) and (4.13). The transition between these two regimes when

crossing the saturation line is expected to occur within a rapidity interval ∆τ ∼ O(1).

The saturation line can equivalently rewritten as ρs(τ) = 2τ , and then the esti-

mates (5.1) for the structure functions at small τ are tantamount to

Fi ∼ exp
{

− c(Q/Qs)
1/2

}

∼ exp
{

− c e(ρ−ρs)/2
}

for ρ > ρs(τ) , (5.2)

with the saturation momentum

Q2
s(τ) ≡ T 2 eρs = T 2 e2τ =

T 2

x2
. (5.3)

Such a small value for Fi for large Q2 ≫ Q2
s(τ) is qualitatively consistent with previous

calculations of the dilaton structure functions at strong coupling [57, 58], although some

quantitative differences remain. In these previous works, one has found that the higher-

twist terms dominate the dilaton structure functions at large Q2, thus yielding a fast

decrease with Q2, which is however power-like, Fi(x,Q
2) ∝ (1/Q2)∆ with ∆ ≥ 1, rather
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than exponential as predicted by eq. (5.2). Some of these higher-twist contributions are

naturally absent from the present analysis, since suppressed in the large–N limit. (This is

the case for the diffractive processes considered in ref. [58], which in the present framework

would correspond to multiple scattering off a same thermal quasiparticle. The correspond-

ing scattering amplitude starts at order 1/N4, and hence it is suppressed at large N even

after multiplication by the number ∼ N2 of thermal degrees of freedom.) On the other

hand, the higher-twist contributions due to protected operators, as discussed for a dilaton

target in ref. [57], would survive in large–N limit, but they are removed by the requirement

of energy-momentum conservation. (Being homogeneous in the four physical dimensions,

the plasma cannot transmit any energy or momentum via a single scattering.) We interpret

this smallness of Fi at relatively large x to mean that for x ≫ xs = T/Q there are hardly

any point-like excitations (partons) in the SYM plasma.

In what follows, we shall rather focus on the more interesting situation at x . xs, or

large rapidity τ & τs(ρ), where partons do exist, as we shall see. A natural place to look for

a partonic interpretation is at the level of the sum rules (3.21) and (3.22). By inspection

of our previous estimates (4.14) for the structure functions, it is easy to check that (i)

the integrals in eqs. (3.21) and (3.22) are dominated by values of x of order xs (for which

the transverse and longitudinal structure functions are of the same order of magnitude),

and (ii) the results of these integrations are of the right order of magnitude, namely of

O(N2T 4), to ensure the fulfillment of the sum rules. For instance, for eq. (3.21) we can

write

E = 18T 2

∫ 1

0
dxF2(x,Q

2) ∼ T 2 xF2(x,Q
2)

∣

∣

∣

x=T/Q
, (5.4)

where xF2(x,Q
2) ∼ N2T 2 when x ≃ T/Q, as manifest from eq. (4.14) (recall that F2 =

FT + FL). Ours results in eqs. (4.12)–(4.13) are not accurate enough to also check the

numerical coefficients in front of the sum rules (this would require a more precise study of

the transition region at x ∼ xs). But the parametric estimates in eq. (4.14) are sufficient

for our present purpose, which is to develop a partonic picture for the strongly coupled

plasma.

Before we proceed, let us first recall the interpretation of the structure function F2 in

the more familiar context of perturbative QCD. In that case, F2(x,Q
2) is a dimensionless

quantity interpreted as the quark distribution in the proton target, i.e., the number of

quarks which are localized in impact parameter space within an area ∼ 1/Q2 fixed by

the resolution of the virtual photon, and which are distributed in longitudinal phase-space

within a unit of rapidity (∆τ ∼ 1) around the rapidity τ = ln(1/x) fixed by the Bjorken

variable. In what follows, we shall boldly propose a similar interpretation for the strongly-

coupled plasma, and then critically examine the most sensible points in our proposal.

Unlike the proton, or dilaton, structure functions, which are dimensionless, the plasma

structure functions Fi as computed in this paper have dimensions of (area)−1. This makes

it natural to try and relate these functions to the density of partons per unit area in the

transverse plane (x, y) (the impact parameter space). The R-current with Q2 ≫ T 2 probes

an area ∼ 1/Q2 much smaller then the typical area ∼ 1/T 2 covered by a ‘thermal quasi-
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particle’ in the plasma — i.e., a typical thermal excitation with energy and momentum of

order T (in the plasma rest frame). This means that the current can see ‘inside’ a quasi-

particle, and thus probe its elementary constituents, or ‘partons’. More precisely, it will

simultaneously scrutinize inside all the quasiparticles located within one coherence length

in the longitudinal direction z. The notion of coherence length is particularly important

for what follows, and so is also the choice of an appropriate Lorentz frame in which the

parton interpretation makes sense. So, let us open a parenthesis at this point, in order to

better explain these concepts:

(i) The partonic picture makes sense in a frame where the current has low energy and a

relatively simple internal structure, so that it can act as a probe of the target. Here,

it will be convenient to use the Breit frame where the R-current is a standing wave.

Namely, if one boosts the plasma by an amount η where cosh η= q/Q, then in this

boosted frame the current has time and z-momentum components ω′=0 and q′=Q.

This current is naturally absorbed by partonic constituents of the boosted plasma

having momenta of order Q. Indeed, the partons participating in the collision have a

longitudinal momentum fraction x, and thus a typical momentum p′z∼x(T cosh η)∼Q
in the boosted frame.

(ii) Before boosting, the current correlator (2.1) is sensitive to longitudinal distances

∆z . 2q/Q2, as is suggested by writing the space-time dependence in the integral

there as

e−iωt+iqz ≃ e−iq(t−z)+iQ
2t/2q , (5.5)

where we have used Q2 ≃ 2q(q − ω) for q2 ≫ Q2. This shows that the integra-

tion in (2.1) can extend over the coherence time ∆tc ∼ 2q/Q2, corresponding to

a coherence length ∆zc ∼ 2q/Q2 in the plasma rest frame. After the boost, this

length gets Lorentz contracted (note that the current is decelerated) down to a value

∆z′c ∼ (2q/Q2)/ cosh η ∼ 1/Q.

Let us now return to eq. (5.4) and try to interpret this sum rule in the Breit frame. In the

l.h.s., we would like to construct the energy density per unit area, dE′/d2b, of the region

of the plasma which is explored by the R-current in this boosted frame. As a component

of the second-rank tensor Θµν , the (three-dimensional) energy density E transforms in the

boost by a factor (cosh η)2. The R-current probes a slice of the plasma with longitudinal

extent ∆z′c in the boosted frame. Hence, dE′/d2b ∼ (E cosh2 η)∆z′c ≃ E(2q/Q2) cosh η.

Multiplying both sides of (5.4) by (2q/Q2) cosh η, one gets

dE′

d2b
∼ xT cosh η

(

1

x
F2(x,Q

2)

)

x=T/Q

. (5.6)

As before mentioned, the quantity xT cosh η ∼ Q in the r.h.s. is the longitudinal momentum

of the constituent (parton) which interacts with the R-current. It is therefore natural to

interpret

1

x
F2(x,Q

2)
∣

∣

∣

x=T/Q
∼ dn

d2b

∣

∣

∣

x=T/Q
, (5.7)
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as the number of partons per unit area within a longitudinal slice of the plasma, with the

width of the slice equal to the coherence length (which is 1/Q in the Breit frame, and q/Q2

in the plasma rest frame). This interpretation, which here has been inferred from the sum

rule (5.4), is in fact natural in view of the standard partonic interpretation of F2 at weak

coupling, as alluded to before. The only new feature with respect to the case where the

target is a single proton4 is the factor 1/x in the l.h.s.: this is a Lorentz-invariant measure

of the amount of matter in the plasma in the longitudinal slice explored by the current.

Namely, this has been generated as (say, in the plasma rest frame): T∆zc ∼ 1/x, where T

is the density of quasi-particles per unit length and ∆zc is the longitudinal extent of the

interaction region.

For what follows, it is useful to notice that the parton density in the r.h.s. can be

equivalently written

dn

d2b
= ∆z′

dn

dz′d2b
≃ dn

p′zdz
′d2b

=
dn

dτd2b
, (5.8)

where ∆z′ ∼ 1/Q is the longitudinal extent of the slice in the boosted frame and p′z ∼ Q

(the z-momentum of a struck parton) is the same as 1/∆z′, as it should by the uncertainty

principle. In writing the last equality, we have identified the rapidity interval dτ = p′zdz
′.

By using eq. (5.7) together with the previous estimate (4.14) for F2 = FT + FL, one

finds

dn

dτd2b
∼ N2Q2 for x ∼ T/Q , (5.9)

which, remarkably, has the same parametric form as in a weakly-coupled gauge theory [59],

and hence it admits a similar physical interpretation. Namely, when interpreted in the Breit

frame, eq. (5.9) gives the total number of partons (per unit area) having a longitudinal

momentum fraction equal to x (with x . T/Q) and with transverse momenta p⊥ . Q.

Since this number appears to be of order N2Q2, we conclude that there is a number of

order one of partons (of a given color) per unit of phase-space:

1

N2

dn

dτd2p⊥d2b⊥
≃ 1 for p⊥ . Qs(x) = T/x . (5.10)

(The factor dτ plays the role of p′zdz
′, cf. eq. (5.8), so the above phase-space density is an

occupation number, in the proper, three-dimensional, sense.) This is similar to pQCD in the

sense that the parton occupation number saturates at sufficiently low transverse momenta,

below a critical scale Qs(x) which grows like a power of 1/x. In QCD, saturation is a

reflection of unitarity in a corresponding scattering process. Where is the unitarity limit

here? Viewed on the gravity side of the AdS/CFT correspondence the gravitational wave

Aµ induced by the R-current is completely absorbed at the horizon of the black hole and

that absorption takes place over a time less than or equal to the coherence time, 1/xT ,

of the wave. This is, in effect, a unitarity limit for scattering of the gravitational wave

4There is no such a factor in the case of a single-hadron target since there the whole longitudinal extent

of the hadron lies within one coherence length for the virtual photon.

– 23 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
3

(very much similar to the corresponding limit for dipole scattering in the familiar dipole

factorization for DIS at high energy [59]).

Recently, the phenomenon of parton saturation in relation with the unitarity limit

for DIS has also been identified at strong coupling, in the case where the target is a single

‘hadron’ (a dilaton) [58]. Interestingly, our above result (5.3) for the saturation momentum

of the plasma is consistent with the corresponding result for a single hadron in ref. [58],

once the assumed structure of the SYM plasma in terms of quasiparticles is taken into

account. Namely, the quantity Q2
s is proportional to the density of partons per unit area

in impact parameter space. In the case of a single dilaton, ref. [58] has found

Q2
s(x) =

Λ2

xN2
(one dilaton target) , (5.11)

with 1/Λ a measure of the dilaton transverse size. When moving to the plasma, the

dilaton gets replaced by thermal quasiparticles with individual size ∼ 1/T . To account for

the degrees of freedom relevant to DIS, one must sum over color (this yields a factor N2)

and also over the number of quasiparticles within a longitudinal slice of width ∆zc ∼ q/Q2

in the plasma rest frame (which gives an additional factor T∆zc ∼ 1/x). After replacing

Λ → T in eq. (5.11) and putting these various factors together, we end up with the previous

result, eq. (5.3), as anticipated. This is an important check of the internal consistency of

our proposed partonic description — it comforts our idea that DIS off the plasma at high

Q2 ≫ T 2 should measure the internal constituents of the thermal quasiparticles composing

the plasma. This check is particularly non-trivial in view of the fact that the unitarization

mechanisms at work appear to be very different in the two cases — disappearance of

the potential barrier for the plasma case, respectively, diffractive scattering via multiple

graviton exchanges in the dilaton case.

We now turn to the case x≪ T/Q, which turns out to be quite subtle. Previously, we

argued that the typical interaction time is of the order of the coherence time ∆tc ∼ q/Q2

of the incoming current. This argument, however, ceases to be valid at very high energy,

where the gravitational wave gets absorbed (reaches the horizon) on a time scale shorter

than ∆tc. A heuristic way to understand this is to recall that, when the energy is so high

that the barrier has disappeared, cf. figure 1c (namely, for qT 2/Q3 ≫ 1), the F1 structure

function becomes independent of Q2, as manifest on eq. (4.12). On the other hand, the

definition (2.1) of the current-current correlator involves an explicit dependence upon Q2,

via the exponential factor inside the integrand, conveniently written as in eq. (5.5). The

only way for this dependence to disappear at high energy is that the integral over t in

eq. (2.1) be cut at some time which is considerably shorter than the coherence time ∆tc.

This requires the lifetime of the gravitational wave (before being absorbed by the black

hole) to be shorter than ∆tc. For a given energy q, this lifetime can be estimated as

q/Q2
s(q), since Q2 = Q2

s(q) is the smallest value of Q for which eqs. (2.9) and (2.6) still

have a Q-dependence. Here, Q2
s(q) is the saturation momentum expressed as a function of

q, and is obtained from the condition qT/Q2
s = Qs/T (the condition to lie on the saturation

line in figure 3) as Q2
s(q) = (qT 2)2/3. Note that q/Q2

s(q) is indeed much smaller than q/Q2

in this high energy regime.
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Because of this short lifetime of the high-energy gravitational wave, we believe that the

quantity F1(x,Q
2) ≃ (1/2x)F2(x,Q

2) (which, we recall, is the dominant structure function

when x≪ T/Q) is actually being determined by interactions of the R-current with partons

of size 1/Q2
s(q), rather than with partons of size 1/Q2. Indeed, eq. (4.12) implies

F1(x,Q
2) = F1(xs, Q

2
s) where Q2

s(q) = (qT 2)2/3 and xs(q) = T/Qs(q) . (5.12)

Let us give another argument leading to the same conclusion. We recall that in DIS in the

QCD dipole picture, and in the rest frame of the target, the size of the dipole emerging

from the electromagnetic current expands with time as ∆x⊥ ∼
√

t/2q [70], so that it takes

a time t ∼ 2q/Q2 for this dipole to reach a size ∆x⊥ ∼ 1/Q. Assume that a similar estimate

applies for the SYM system emerging from the R-current (the analog of the QCD color

dipole); then, after a time ts ∼ 2q/Q2
s(q), which is the lifetime of this SYM system before

being absorbed by the plasma, its size gets only as big as ∆x⊥ ∼ 1/Qs(q), which indicates

once again that the partons at scale Qs(q) are the relevant degrees of freedom.

We shall conclude this discussion, and also the paper, with a critical analysis of the

main assumptions that we have made in reaching eqs. (5.7) and (5.9) — the equations at

the basis of our partonic interpretation. (i) We have assumed the plasma to be made

of constituents (‘quasiparticles’) having momenta on the order of T (in the plasma rest

system) when measured on a resolution scale T . The fact that entropy density and energy

density scale as N2T 3 and N2T 4 suggest that this is the case, but this understanding

is, perhaps, not completely clear. Note that, for the present purposes, we did not need

to specify the actual nature of these ‘quasiparticles’, which at strong coupling would be

a most difficult task. (ii) We have also assumed that the R-current directly measures

individual constituents at scale Q. In QCD the electromagnetic current provides such a

measurement in the leading order renormalization group formalism. At next-to-leading

order, ambiguities occur in separating the measured partons from the probe; however,

these ambiguities are effects of order α(Q2) and cannot affect general conclusions as to

numbers of partons in a hadron or plasma. In SYM, we have taken the coupling large

so that the separation between the probe and the partons to be measured is not sharp

anymore. In reaching (5.7) and (5.9) we have assumed that, up to factors of order one, the

R-current couples to individual constituents of the plasma and that this coupling is not

strongly renormalized. Because of these subtleties we feel that our results have to be taken

with caution, and that a deeper understanding of the partonic structure of the plasma in

strong coupling SYM is highly desirable.
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A. Structure functions: Definitions and sum rules

In this appendix we remind the reader of the tensor structure of Rµν and derive a sum

rule relating the expectation of energy momentum tensors in the plasma to deep inelastic
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scattering on the plasma. Rµν is defined in eq. (2.1), The tensor structure must be given

in terms of qµ and the plasma four-velocity nµ = (nt, nx, ny, nz), with nµ = (1, 0, 0, 0)

corresponding to the plasma at rest. Then current conservation plus the symmetry property

Rµν(q) = Rνµ(−q) imply the following general structure (with ηµν = (−1, 1, 1, 1)):

Rµν =

(

ηµν −
qµqν
Q2

)

R1 +

[

nµnν −
n · q
Q2

(nµqν + nνqµ) +
qµqν
(Q2)2

(n · q)2
]

R2 . (A.1)

The two scalar functions R1 and R2 depend upon the two invariants Q2 and x introduced

in eq. (2.13), and they are even functions of x. We define the DIS structure functions as

(note that n · q = −ω is negative)

F1 =
1

2π
ImR1, (A.2)

F2 =
−(n · q)

2πT
ImR2 . (A.3)

Writing the energy-momentum tensor of the plasma as

Θµν = (ηµν + 4nµnν)
E
3

with E =
3N2π2T 4

8
, (A.4)

we can rewrite the leading-twist results in eq. (3.20) as

R
(1)
1 =

E
15T 2x2

, R
(1)
2 =

4E
9Q2

. (A.5)

This rewriting makes it clear that the calculation of the leading-twist contribution to Rµν
in section 3 amounts to computing the coefficients of the energy-momentum tensor in the

operator product expansion for the current-current correlator.

To deduce the sum rules (3.21) and (3.22), we shall write z = 1/x and assume the

standard analytic structure for the functions Ri(z) in the complex z plane. Namely, Ri(z)

is an analytic function everywhere in the complex plane except for two cuts along the

real axis (from z = −∞ to z = −1 and, respectively, from z = 1 to z = ∞). Then our

previous results in eq. (A.5) express the dominant behaviour of Ri(z) near z = 0. Using

this information together with eq. (A.5), we can successively write

4E
9Q2

=

∮

dz

2πi

R2

z
= 2

∫ ∞

1

dz

2πi

2i ImR2

z

=
2

π

∫ 1

0
dx

ImR2

x
=

8T 2

Q2

∫ 1

0
dxF2(x,Q

2) (A.6)

where the contour in the first integral is a small circle surrounding the origin. This is then

distorted in the complex plane in such a to wrap around the two branch cuts which give

equal contributions. (We assume the integrand to vanish sufficiently fast as |z| → ∞ to be

able to neglect the contributions of the large circles closing the contour.) Similarly,

E
15T 2

=

∮

dz

2πi

R1

z3
= 2

∫ ∞

1

dz

2πi

2i ImR1

z3

=
2

π

∫ 1

0
dxx ImR1 = 4

∫ 1

0
dxxF1(x,Q

2) (A.7)
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B. Low energy: tunnel effect

In this appendix we shall use WKB techniques to estimate the probability for inelastic

scattering via tunnel effect in the intermediate energy regime at Q ≪ q ≪ Q3/T 2, where

the potential barrier is high. The argument turns out to be non-trivial because the imag-

inary part of the classical solution — which, we recall, is the measure of inelasticity in

the scattering — gets built via a ‘double-tunnel effect’ (see below), for which the WKB

approximation is generally not reliable. Yet, as we shall later argue, in the present setup

this approximation should be reliable for the imaginary part of the solution.

We shall focus on the longitudinal wave (the corresponding discussion of the transverse

wave is entirely similar) and use the wave equation in Schrödinger form, cf. eqs. (2.14)–

(2.15). We shall construct our global approximation for ψ by matching approximate so-

lutions valid in three different domains: (i) u close to zero, (ii) u inside the potential

barrier in figure 1a, and (iii) relatively large u, on the right side of the barrier. As usual,

the imaginary part in the solution will be generated by the condition that ψ(u) be a purely

outgoing wave at large u ∼ O(1).

(i) For relatively small u, the potential in eq. (2.15) can be approximated as

V ≃ 1

u

[

− 1

4u
+K2

]

for 0 ≤ u ≪ K/k . (B.1)

Then the general solution can be written as:

ψ(u) = C1

√
uK0(2K

√
u) + C2

√
u I0(2K

√
u) , (B.2)

where the coefficient C1 is fixed by the boundary condition at u = 0, eq. (2.10), as

C1 = −2k2AL(0). This approximation is similar to the zeroth order perturbative

solution (3.5) in section 3 except that, now, the coefficient C2 in front of I0 is allowed

to be non-zero because of the different behaviour assumed at large u. The imaginary

part, Im C2, of this coefficient is the quantity that we are primarily interested in,

because this quantity determines, via eq. (2.11), the imaginary part of the ‘on-shell’

action.

(ii) For values of u inside the potential barrier, u1 < u < u2 with u1 ≃ 1/(4K2) and

u2 ≃ K/k the two classical turning points in figure 1a, the solution can be constructed

via the WKB approximation, which yields

ψ(u) ≃ 1
√

V (u)

[

C3 exp

{

−
∫ u

u1

du′
√

V (u′)

}

+ C4 exp

{∫ u

u1

du′
√

V (u′)

}]

. (B.3)

In applications of the WKB technique to the tunnel effect, the analog of the second

term in the equation above is generally omitted, since beyond the accuracy of this

approximation. However, in so far as the imaginary part of the solution is concerned

— which, we recall, is our main interest here — the inclusion of this term is both

essential and justified, as we shall later argue.
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The approximate solutions (B.2) and (B.3) have a common validity range at u1 <

u ≪ K/k, and thus can be matched with each other in this window. By also using

the asymptotic behaviour of the modified Bessel functions, as valid for u ≫ u1, one

finds

C1 =
2√
π
C3 , C2 = 2

√
π C4 . (B.4)

(iii) For u ≫ u2, the WKB solution is similar to the one constructed in section 4 and

reads

ψ(u) ≃ C
√

−V (u)
exp

{

i

∫ u

u2

du′
√

−V (u′)

}

, (B.5)

where we have selected only the outgoing wave, i.e., the one propagating towards the

black hole. (This corresponds to choosing c5 = 0 in eq. (D.5).) The above coefficient

C is the same as c4 in eq. (D.5), but its precise value is irrelevant here (it would

merely determine the normalization of the wave near u = 1, cf. eqs. (D.2) and (D.7)).

Rather, what matters is the relative normalization of the coefficients C3 and C4 in

the solution (B.3) inside the barrier, which in turn is fixed by matching eqs. (B.3)

and (B.5) near u = u2. This matching cannot be done by directly comparing these

two solutions, as they have no overlap with each other. Yet, the proper matching

procedure is standard in the WKB literature [71, 72] (this requires a study of the

exact behaviour near u2, which can be done by linearizing the potential and then

recognizing the Airy equation), and here we shall simply list the result:

C3 =
C√
D

e−iπ/4 , C4 =
i

2

√
DC e−iπ/4 =

i

2
DC3, (B.6)

where D is the WKB attenuation factor (in the usual context of quantum mechanics,

this describes the decrease in the intensity |Ψ|2 of the wavefunction after passing the

potential):

D ≡ exp

{

−2

∫ u2

u1

du
√

V (u)

}

. (B.7)

By comparing eqs. (B.4) and (B.6) one finds

C2 = i
π

2
DC1 , (B.8)

which implies the following behaviour for (B.2) near the boundary at u = 0 (recall

that ψ(u) ≃ √
u a(u) for small u):

a(u) ≃ k2AL(0)
[

lnK2 + (lnu+ 2γ) − iπD
]

. (B.9)

This is our main result here. It shows that, in the presence of a high potential barrier,

the imaginary part of the solution near u = 0 gets built via a double-tunnel effect.

This is ‘double’ since the relative strength of the imaginary part versus the real part
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is D, and not
√
D. This result is in fact natural: this imaginary part is the feedback

of the absorption taking place near u = 1 on the gravitational perturbation at the

Minkowski boundary. First, the incoming perturbation, which is purely real, has to

cross the barrier to approach the black hole, then, after the scattering takes place near

u = 1, the imaginary part thus generated in the solution must propagate backwards

and cross the barrier once again, before being measured (in the form of DIS structure

functions) at u = 0.

By using eq. (B.9) together with the corresponding equation for the transverse sector,

one can finally compute the DIS structure functions generated through tunneling in this

low-energy (or low-temperature) regime. One thus finds quite similar expressions for the

longitudinal (FL = F2 − 2xF1) and transverse (FT = 2xF1) structure functions:

Fi ≃ N2Q2x

32π2
Di (i = L, T ) . (B.10)

It is easy to check that the integral in eq. (B.7) is dominated by the region in u where

the potential can be simplified to V (u) ≃ (K2 − k2u2)/u, which is the same as the poten-

tial (2.17) in the transverse sector and for u≪ 1. Then, the attenuation factor is essentially

the same (to leading exponential accuracy) for both the longitudinal and the transverse

waves, and can be estimated as

D ∼ exp
{

− c(K3/k)1/2
}

with c =
2Γ2(1/4)

3
√

2π
. (B.11)

This explains the estimates (5.1)–(5.2) for FT and FL.

Let us finally explain why, in the present context, we think that it was justified to

keep the second term in the WKB solution (B.3). Generally, this term is discarded in

applications of the WKB method [71, 72] since it is exponentially suppressed as compared

to the first term there (recall that C4 ∝ DC3, cf. (B.6)), and hence it is much smaller

than the corrections to the prefactor in that first term, which are only power-suppressed

(in this case, by rational powers of k/K3). However, in the present problem, the first

exponential in (B.3) is matched onto the real part, ∝ C1 K0, of the solution at small u;

hence this large exponential term is strictly real, and so would be all the higher-order terms,

neglected by the WKB approximation, which would correct its prefactor. Accordingly,

the second exponential in (B.3) is the only one which can develop an imaginary part,

and this imaginary part is therefore correct to WKB accuracy. To conclude, the WKB

approximation cannot be trusted for the real part of the coefficient C4 in (B.3), but only

for its imaginary part, which is the quantity of interest for us here.

C. The operator product expansion at weak coupling

In this appendix we shall show that, when computed to lowest-order in perturbation theory,

the coefficient of the energy-momentum tensor in the operator product expansion (OPE)

of the current-current correlator (2.1) is exactly the same as the corresponding coefficient
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in the strong-coupling limit, as implicitly computed in (3.20) (or in eq. (A.5)). This non-

renormalization property reflects the high degree of supersymmetry of N = 4 SYM (see,

e.g., [68]). In the perturbative calculation of the OPE to follow, we shall keep only the

operators which mix with the energy-momentum tensor Tµν .

In N = 4 SYM, there are six scalars φm in the vector representation of SO(6) and four

Weyl fermions ψi in the fundamental representation of SU(4). The R symmetry current

corresponding to the generator t3 = diag(1/2,−1/2, 0, 0) is

Jµ =
1

2
(ψ1σ̄µψ1 − ψ̄2σ̄µψ2) +

1

2
(φ6D

µφ5 − φ5D
µφ6 + φ4D

µφ3 − φ3D
µφ4) , (C.1)

where σ̄µ = (1,−~σ), ~σ being the Pauli matrices. By contracting fields with free propagators,

it is straightforward to derive the relevant part of the OPE:

i

∫

d4x e−iqxJµ(x)Jν(0)

=
1

Q2

(

ηµαηνβ − qµqα

Q2
ηνβ − ηµα

qνqβ

Q2
+ ηµν

qαqβ

(Q2)2

)





∑

i=1,2

Tψ,iαβ +
∑

m=3,4,5,6

T φ,mαβ





− 1

(Q2)2

(

ηµν − qµqν

Q2

)

qαqβ
∑

m=3,4,5,6

T φ,mαβ + · · ·

=
1

Q2

(

ηµαηνβ− qµqα

Q2
ηνβ−ηµα q

νqβ

Q2
+ηµν

qαqβ

(Q2)2

)(

1

2
Tψαβ+

2

3
T φαβ+(nonsinglet terms)

)

− 1

(Q2)2

(

ηµν − qµqν

Q2

)

qαqβ
(

2

3
T φαβ + (nonsinglet terms)

)

+ · · · . (C.2)

where in writing the second equality we have projected onto the SU(4) singlet operators

and denoted

T φαβ ≡
6

∑

m=1

T φ,mαβ ≡
6

∑

m=1

φmiDαiDβφm (C.3)

and

Tψαβ ≡
4

∑

i=1

Tψ,iαβ ≡
4

∑

i=1

i

2
ψ̄i(σ̄αDβ + σ̄βDα)ψi . (C.4)

These operators represent the energy-momentum tensors for scalar and fermion fields,

respectively. Under renormalization, they mix with the total energy-momentum tensor,

which also includes the respective operator for the gluon fields and reads

Tµν = F aµλF
aλ
ν +

i

2

4
∑

i=1

ψ̄i(σ̄µDν + σ̄νDµ)ψi +
6

∑

m=1

DµφmDνφm + · · ·

≡ T gµν + Tψµν + T φµν . (C.5)

Their mixing is governed by the anomalous dimension matrix for twist-two operators. The

eigenoperators of the anomalous dimension matrix are [67]

TI ≡ T g + Tψ + T φ, TII ≡ −2T g + Tψ + 2T φ, TIII ≡ −T g + 4Tψ − 6T φ .(C.6)
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The last two operators (unlike the former) have nonzero anomalous dimensions. After de-

composing the operators which appear in the OPE (C.2) in terms of the above eigenvectors,

i.e.,

1

2
Tψ +

2

3
T φ =

1

3
TI +

1

6
TII ,

2

3
T φ =

2

15
TI +

2

21
TII −

2

35
TIII , (C.7)

we finally get

i

∫

d4xe−iqxJµ(x)Jν(0) =
1

3Q2

(

ηµαηνβ − qµqα

Q2
ηνβ − ηµα

qνqβ

Q2
+ ηµν

qαqβ

(Q2)2

)

Tαβ

− 2

15(Q2)2

(

ηµν − qµqν

Q2

)

qαqβTαβ + · · · , (C.8)

from which one can read the coefficients of Tµν in the OPE of the current-current correlator.

Although explicitly obtained here via a lowest-order calculation in perturbation theory,

these coefficients turn out to be exactly as those (indirectly) computed at strong coupling,

in section 3. To see that, let us specialize (A.4) to the high-energy regime, where

qαqβTαβ ≈ (q−)2T−− ≈ 2q2T−− . (C.9)

and then take the thermal expectation value by using the expression (A.4) for the average

energy momentum-tensor Θµν ≡ 〈Tµν〉 in a strongly-coupled SYM plasma. We thus obtain

i

∫

d4x e−iqx〈Jµ(x)Jν(0)〉 =
π2N2T 4

6Q2

(

nµnν − q · n
Q2

qµnν − q · n
Q2

qνnµ +
(q · n)2

(Q2)2
ηµν

)

−q
2π2N2T 4

15(Q2)2

(

ηµν − qµqν

Q2

)

=
π2N2T 4

6Q2

(

nµ −
n · q
Q2

qµ

)(

nν −
n · q
Q2

qν
)

+
π2N2T 4q2

10(Q2)2

(

ηµν − qµqν

Q2

)

, (C.10)

which is in full agreement with (3.20), as anticipated (recall that x = Q2/2qT ). Normally,

the OPE coefficients at strong coupling are extracted by studying 3- and 4-point correlation

functions. Our method in section 3 is more straightforward (though limited to the energy

momentum tensor) in that we do not have to compute higher point functions, but only use

the known value of 〈Tµν〉 at finite temperature.

D. High energy: the WKB approximation

In this appendix, we shall construct approximate solutions to the gravitational wave equa-

tions in the high energy regime at k ≫ K3. We shall thus confirm and extend the results

found in section 4, which, we recall, were valid only for u≪ 1. The complete solutions will

be obtained by matching three different approximations, valid for different values of u: the
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two limited solutions valid for u ≪ 1 and near u = 1, respectively, and the WKB solution

valid in the intermediate region at 0 < u ≪ 1. In this construction, the outgoing-wave

condition will be imposed near the black hole horizon at u = 1, in conformity with the

original prescription in refs. [61, 64].

The general solutions valid for u ≪ 1 have been already constructed in section 4. In

the longitudinal sector, this is given by eq. (4.4), where the coefficient c2 is fixed by the

boundary condition at u = 0, with the result shown in eq. (4.5); as for c1, this will be here

obtained by matching onto the solution near u = 1, via the intermediate WKB solution.

Consider now the solution near the horizon. For k ≫ K3 and u ≃ 1, eq. (2.14)

simplifies to

ψ′′ +
k2

4(1 − u)2
ψ = 0 . (D.1)

The solution which obeys the right, outgoing-wave, behaviour near u = 1 reads

ψ(u) = c3(1 − u)
1

2
(1−ik) . (D.2)

(The second independent solution (1 − u)
1

2
(1+ik) must be rejected since it would describe

a wave coming out from the horizon, i.e., a wave reflected by the black hole.)

Furthermore, in the intermediate region u0 ≪ u ≪ 1, with u0 = 1/(4k2)1/3, the

‘Schrödinger’ wave equation reads

ψ′′ +
k2u

(1 − u2)2
ψ = 0 . (D.3)

The WKB solution has the standard structure ψ(u) = eiσ0(u)/
√

|σ′0| with

σ0(u) =

∫ u

0
du′

√

−V (u′) = ±k
∫ u

0
du′

√
u′

1 − u′2

= ±k
2

(

ln
1 +

√
u

1 −√
u
− 2 arctan

√
u

)

. (D.4)

Hence the general solution in this intermediate region reads

ψ(u) =

√

1 − u2

k
√
u

[

c4Fk(u) + c5F−k(u)
]

,

Fk(u) ≡
(

1 +
√
u

1 −√
u

)ik/2

e−ik arctan
√
u . (D.5)

We can now determine the unknown coefficients by matching the previous solutions in

their common ranges of applicability. Comparing (D.2) and (D.5) near u = 1 gives

c5 = 0, c3 = c4

√

2

k
eik ln 2−iπk/4 . (D.6)
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Then a comparison of (4.4) and (D.5) in the region u ≪ 1 but u ≫ u0 — in this region

ψ(u) ≃ √
u a(u) and ξ ≫ 1, so one can use the asymptotic expansions for the Bessel

functions in eq. (4.4) — gives, after simple calculations,

c1 = −ic2, c4 =

√

3

π
c2 e−3iπ/4 . (D.7)

As anticipated, we have recovered the simple relation (4.6) between c1 and c2 which implies

that already the small–u solution, eq. (4.4), is an outgoing wave, cf. eq. (4.7).

Turning now to the transverse sector, where the small–u solution was given in eq. (4.9),

we can similarly obtain the (outgoing-wave) solution near u = 1 as

Ai(u) = c3(1 − u)−ik/2 , (D.8)

and the corresponding WKB solution as (compare to eq. (D.5))

Ai =
c4

√

k
√
u

(

1 +
√
u

1 −√
u

)ik/2

e−ik arctan
√
u . (D.9)

(We have anticipated that c5 is set to zero after matching onto eq. (D.8).) The matching

conditions then yield

c1 = −ic2, c3 =
c4√
q

eik ln 2−iπk/4, c4 =
√

3/π c1

(

2k

3

)1/3

e−5iπ/12 . (D.10)

One finally gets the same result at small u as previously displayed in eq. (4.10).
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